Notice: Reference genome sequences of TM-1 and 3-79 are available!
Current Position:Home > Least Research

GbWRKY1 mediates plant defense-to-development transition during infection of cotton by Verticillium dahliae by activating JAZ1 expression

Update Time: 2014-11-06 10:08:29Click: times
Chao Li, Xin He, Xiangyin Luo, Li Xu, Linlin Liu, Ling Min, Li Jin, Longfu Zhu*, Xianlong Zhang. 2014. Plant Physiology

Abstract 

Plants have evolved an elaborate signaling network to ensure an appropriate level of immune response to meet the differing demands of developmental processes. Previous research has demonstrated that DELLA proteins physically interact with JAZ1 and dynamically regulate the interaction of the gibberellic acid (GA) and jasmonic acid (JA) signaling pathways. However, whether and how the JAZ1-DELLA regulatory node is regulated at the transcriptional level in plants under normal growth conditions or during pathogen infection is not known. Here, we demonstrate multiple functions of Gossypium barbadense GbWRKY1 in the plant defense response and during development. Although GbWRKY1 expression is induced rapidly by MeJA and infection by Verticillium dahliae, our results show that GbWRKY1 is a negative regulator of the JA-mediated defense response and plant resistance to the pathogens Botrytis cinerea and V. dahliae. Under normal growth conditions, GbWRKY1-overexpressing lines displayed GA-associated phenotypes, including organ elongation and early flowering, coupled with the downregulation of the putative targets of DELLA. We show that the GA-related phenotypes of GbWRKY1-overexpressing plants depend on the constitutive expression of Gossypium hirsutum GhJAZ1. We also show that GhJAZ1 can be trans-activated by GbWRKY1 through TGAC core sequences, and the adjacent sequences of this binding site are essential for binding specificity and affinity to GbWRKY1 as revealed by dual-luciferase reporter assays and electrophoretic mobility shift assays. In summary, our data suggest that GbWRKY1 is a critical regulator mediating the plant defense-to-development transition during V. dahliae infection by activating JAZ1 expression.