Pengcheng Wang, Jun Zhang, Lin Sun, Yizan Ma, Jiao Xu, Sijia Liang,Jinwu Deng, Jiafu Tan, Qinghua Zhang, Lili Tu, Henry Daniell, ShuangxiaJin, Xianlong Zhang.2017.Plant Biotechnology Journal
Abstract
Gossypium
hirsutum is an
allotetraploid with a complex genome. Most genes have multiple copies that
belong to At and Dt subgenomes. Sequence similarity is also very high between
gene homologs. To efficiently achieve site/gene-specific mutation is quite
needed. Due to its high efficiency and robustness, the CRISPR (Clustered
Regularly Interspaced Short Palindromic Repeats)/Cas9 system has exerted broad
site-specific genome editing from prokaryotes to eukaryotes. In this study, we
utilized a CRISPR/Cas9 system to generate two sgRNAs in a single vector to
conduct multiple sites genome editing in allotetraploid cotton. An exogenously
transformed gene Discosoma red fluorescent protein2(DsRed2)and an endogenous gene GhCLA1were chosen as targets. The DsRed2 edited plants in T0 generation reverted its
traits to wild type, with vanished red fluorescence the whole plants. Besides,
the mutated phenotype and genotype were inherited to their T1 progenies. For
the endogenous gene GhCLA1, 75% of
regenerated plants exhibited albino phenotype with obvious nucleotides and DNA
fragments deletion. The efficiency of gene editing at each target site is 66.7%
to 100% .The mutation genotype were checked for both genes with Sanger
sequencing. Barcode-based high-throughput sequencing, which could be highly
efficient for genotyping to a population of mutants, was conducted inGhCLA1 edited T0 plants and it matched well with
Sanger sequencing results. No off-target editing was detected at the potential
off-target sites. These results proves that the CRISPR/Cas9 system is highly
efficient and reliable for allotetraploid cotton genome editing.
PMID:28608990 DOI:10.1111/nph.14636 IF=7.443
-